

An Inter-domain Routing Protocol for Multi-homed Wireless Mesh Networks

Yair Amir, Claudiu Danilov, Raluca Musaloiu-E., Nilo Rivera

Distributed Systems and Networks Lab
The Johns Hopkins University

Motivation

- Wireless Mesh Networks are becoming an appealing way to extend wireless coverage.
- As the size of wireless mesh network increases, so will the number of Internet connected nodes.
- Internet connections are not necessarily on the same network.
- New protocols are needed to enable mobility and efficient use of hybrid wired-wireless environment.

Challenges

- Not changing the client
- Multi-homed mesh environment
 - Multiple Internet Gateways
 - Handoff between Internet Gateways
- Fast, lossless inter-domain handoff

Related Work

Handoff on Wireless Networks

- Mobile IP [C. Perkins, IP Mobility Support, RFC2002, 1996]
- MobileNAT [Buddhikot, Hari, Singh, Miller, MONET 2005]

Wireless Mesh Networks

Metricom Ricochet, MIT Roofnet, Microsoft MCL, Rice TAPS,
 UCSB/Bell Labs MeshCluster, SUNY Stony Brook iMesh etc.

Overview

- The SMesh Architecture
- Multi-homed Wireless Mesh Network
 - Self-forming Overlay Network
 - Optimized routing
 - Inter-domain Handoff
- Experimental results

The **SMesh** Architecture

Intra-domain Handoff

Seamless Client Access

- Standard DHCP protocol
- Client always gets the same IP address
 - Assign IP based on MAC address (10.x.y.z)
- Client routes all packets through a Virtual Default Gateway
- Client gets Gratuitous ARP to associate Default Gateway IP address with the currently serving access point.

Routing Approach

Multi-homed Environment

Multi-homed Environment

- Wireless Auto-discovery defines wireless topology.
- Internet Gateways need to be pre-configured to form an initial connected graph.
- Internet Gateways advertise their existence on gateways multicast group.
- All Internet Gateways eventually form a fully connected graph.

Inter-domain Handoff

SMesh runs in a private address space

NAT Identifier: (Source IP, Source Port, Dest. IP, Dest. Port)

"Connection Oriented" protocols expect packets to come from the same source:

- TCP: If host address is different, connection breaks.
- UDP: Some protocols require the same host IP address or else they discard the packet.

Inter-domain Handoff

Solution:

- Route each stream through the Internet gateway used during connection establishment
- New NAT table field: Owner Internet Gateway

TCP Inter-domain Handoff

UDP Inter-domain Handoff

Problem:

No SYN Packet to identify "connection" establishment.

Solution:

- Route packets with unknown owner to both destination and gateways multicast group.
- If no owner announcement, claim ownership after a timeout (i.e. 200ms).

UDP Inter-domain Handoff

Caveat:

- Have to deal with multiple nodes claiming ownership.

Use reverse traffic from destination and lowest IP address to break such ties.

P2P Hybrid Routing

Inter-domain Handoff Flow Chart

Experimental Results

Multi-homed Testbed

Experiment:

Full Duplex VoIP

Internet ←→ Client

Client ←→ Client

Each stream:

G.711

64 Kbps

160 bytes / 20 ms

Client-Internet: Latency

Client-Internet: Lost Packets

Internet → Client 50 / 15,000

Client → Internet 40 / 15,000

Client-Internet: Duplicate Packets

Client → Internet

P2P: Latency

Client B → Client A

Client A → Client B

P2P: Lost Packets

Client B → Client A 84 / 15,000

Client A → Client B 92 / 15,000

Non-Owner Internet Gateway Failover

Conclusion

- Support for multi-homed wireless mesh networks
- Fast, seamless inter-domain handoff
- Optimized hybrid, wired-wireless routing

Questions?

